CLIVER WYMAN

Disrupt the City: The Future of Urban Mobility

KeyTheses

One Accelerated adoption of **mobility substitutes** driven by COVID 19

Two

Uncertainty about the future of mobility leads to **6 scenarios for the future**

Three

The stakes are high – differences between scenarios have major implications for society, the environment and business

COVID-19 has accelerated the adoption of digital substitutes for mobility

How has the COVID-19 pandemic impacted how much you use the following technologies?

Source: Oliver Wyman Forum COVID-19 Survey, n=6686

Three reasons why behaviors might endure

Behaviors that endure because of economic fallout

- Consumers are not able to afford pre-crisis alternatives
- Businesses shutter due to financial instability or regulatory changes

Behaviors that endure because of risk perceptions

- Consumers and businesses change behaviors to avoid virus transmission
- Expectations for traditional mobility are higher

Behaviors that endure because of accelerated tech adoption

- Switching costs were the biggest barrier to adoption pre-COVID
- New solutions are better, faster or cheaper

Most respondents say they will continue to use mobility substitutes post-COVID

How frequently will you use these technologies once stay-at-home orders end?

Source: Oliver Wyman Forum COVID-19 Survey, n=6686

Mobility substitutes will endure as they provide a faster, cheaper, and effective alternative to in-person interaction

Work video conferencing: How much will you use once stay-at-home orders end?

This group plans to increase use because they can

Source: Oliver Wyman Forum COVID-19 Survey, n=6686

We interviewed 30+ mobility professionals to better understand the future of mobility

Trends – areas of agreement

Everything will become more:

- Connected
- Electric
- Autonomous
- Managed by Digital Mobility Services

Uncertainties – areas of disagreement/less sure

- How fast will new technologies develop and be adopted?
- What business models will prevail; who will build, own, and operate future transportation systems?
- What are the interactions among the different technologies?

We envision six possible scenarios for urban mobility over the next decade

More rapid adoption of new technology and business models

<u>What's at stake</u> – shifting trends in Mobility & uncertainties about adoption create large differences in future macro-level outcomes

Range of scenario outcomes over 10 years (2020-2030, Global)

	25 Trillion	Fewer kilometers driven by ICE vehicles
ⁱ es	6.2 Billion	Metric tons of CO ₂ could be conserved
\$	610 Billion	Kilowatt-hours could be needed
\bigcirc	260,000	Lives saved from avoided motor vehicle accidents
	3,500	Fewer organ donations may be available

Causes/Factors

- More public transportation and multi-modal options reduces dependence on personal cars
- EV's capture some market share from ICE vehicles
- Growth of EVs creates additional demand for electrical power
- Reduced dependence on personal vehicles and electrification combine to lower net emissions
- Autonomy drives a reduction in deaths and accidents per mile driven
- Fewer deaths from motor vehicle accidents reduces the supply of organ donations

Source: Oliver Wyman Forum Future Mobility Scenarios analysis

What's at stake: Tailpipe emissions

The uncertainty in EV adoption creates a wide range of possible environmental outcomes

Independent DMS:

Less efficient, disjointed network results in increased driving and slower shift to more efficient transportation modes

6.2 Billion

Metric tons of CO_2 could be conserved

Or, **14 months** worth of US carbon emissions

Multimodal MaaS Network:

Hyper-efficient network uses low-emission EVs, public transit, and micromobility

Scenario outcomes will differ by geography

Singapore

Mobility Index score = 74.1

- Centralized government pushes top-down agenda
- Best-in-class for pioneering innovations and collaborative initiatives

Amsterdam

Mobility Index score = 72.4

- Highest public transport density of all indexed cities
- Large-scale, smart-city initiative encouraged investment in local mobility industry

Autonomous MaaS

San Francisco

Mobility Index score = 70.7

- Global hub for MaaS services with many competing tech players¹
- Limited access to public transport results in a high rate of private car use

Cairo

Mobility Index score = 35.7

- Laggard in preparedness for mobility transformation
- High pollution from a lack of clean air technologies and residents have limited access to metro stations

Independent DMS

1. MaaS = Mobility as a Service; integration of various transport services into a single mobility service accessible on demand

Parting Thoughts

Accelerated adoption of mobility substitutes due to COVID-19 are likely here to stay – and will have a lasting impact on primary demand for mobility

There is a lot at stake – technology changes across five areas are reshaping mobility and have the potential for large impacts on society and across major industries

None of these scenarios are set in stone

and we don't view any as 'most likely' – we have the opportunity to shape and prepare for these potential futures